
REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18

Form Approved 
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other 
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information 
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other 
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1.  REPORT DATE (DD-MM-YYYY) 2.  REPORT TYPE 3.  DATES COVERED (From - To)

4.  TITLE AND SUBTITLE 5a.  CONTRACT NUMBER

5b.  GRANT NUMBER

5c.  PROGRAM ELEMENT NUMBER  

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

6.  AUTHOR(S)

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.  PERFORMING ORGANIZATION 
     REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S)

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12.  DISTRIBUTION/AVAILABILITY STATEMENT

13.  SUPPLEMENTARY NOTES

14.  ABSTRACT

15.  SUBJECT TERMS

16.  SECURITY CLASSIFICATION OF:
a.  REPORT b. ABSTRACT c. THIS PAGE

17.  LIMITATION OF 
       ABSTRACT

18.  NUMBER
       OF  
       PAGES 

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER (Include area code)

2/1/1997 Technical Report - Other 1/1/0001 - 1/1/0001

A Characteristic Domain Decomposition Algorithm for Two-Phase Flows
with Interfaces

University of South Carolina Columbia SC  242

Office of Naval Research Columbia 46  242

1  1/1/0001 12:00:00 AM

U U



IMI
Preprint Series

INDUSTRIAL

MATHEMATICS

INSTITUTE

Department of  Mathematics
University of  South Carolina

1997:16 

A characteristic domain 
decomposition technique for two-
phase flows with interfaces 

H. Wang and B.G. Ersland



�

A Characteristic Domain
Decomposition Algorithm for
Two�Phase Flows with Interfaces

HONG WANG and BRIT GUNN ERSLAND

��� INTRODUCTION

The mathematical model that describes the process of an immiscible displacement of
oil by water in reservoir production or other two�phase �uid �ows in porous media leads
to a strongly coupled system of a degenerated nonlinear advection�di�usion equation
for saturation and an elliptic equation for pressure and velocity� The hyperbolic
nature� strong coupling� and nonlinearity of the system and the degeneracy of the
di�usion makes numerical simulation a challenging task� Many numerical methods
su�er from serious non�physical oscillations� excessive numerical dispersion� and�or
a combination of both �CJ��� Ewi�	
� Previously� Espedal� Ewing� and coworkers
developed a characteristic� operator�splitting technique in e�ectively solving two�phase
�uid �ow problems �DEES��� EE�
� In practice� a reservoir often consists of di�erent
subdomains with di�erent porosities and permeabilities� In the case of single�phase
�uid �ows the concentration and total �ux are continuous across the interfaces between
di�erent subdomains since the di�usion never vanishes� Our earlier work addressed
numerical simulation to linear transport equations arising in single�phase �ows with
interfaces ��
� However� in the case of two�phase �uid �ows the saturation equation
itself is nonlinear and di�erent subdomains have di�erent capillary pressure curves�
The continuity of capillary pressure across interfaces implies a jump discontinuity of
the water saturation at the same locations� The jump discontinuity of the saturation
at the interfaces might incur some oscillations around the interfaces� which can be
propagated into the domain and destroy the overall accuracy� Hence� great care has
to be taken in the development of an e�ective solution procedure for the simulation
of two�phase �uid �ows in porous media with interfaces�
This paper describes a characteristic�based� non�overlapping domain decomposition

algorithm for solving the saturation equation in two�phase �uid �ows with interfaces�
First� with the known saturation at the previous time step one obtains an approximate
Dirichlet boundary condition at the out�ow domain interface by integrating the
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saturation equation �ignoring the capillary pressure term� along characteristics� With
the approximate out�ow Dirichlet boundary condition at the domain interface and the
given boundary condition at the physical in�ow boundary one can close the system
on the current subdomain and applies the characteristic operator�splitting procedure
�DEES��� EE�
 to solve the full saturation equation �including the capillary pressure
e�ect�� Second� one uses the continuity of capillary pressure across the domain interface
to pass the value of saturation as an approximate in�ow Dirichlet boundary condition
to the next subdomain� one then applies the same characteristic operator�splitting
procedure to solve the saturation equation on the current subdomain� Third� according
to the overall loss or gain of mass one adjusts the approximate out�ow Dirichlet
boundary condition at the domain interface to iterate between di�erent subdomains
until the algorithm converges� Finally� a mixed method is adopted to solve the pressure
equation due to its accurate approximation to the velocity �eld and its local mass
conservation property�
The rest of the paper is organized as follows� In Sections � and � we formulate the

problem and discuss related solution techniques� In Section 	 we present a domain
decomposition algorithm for the two�phase �uid �ow problems with interfaces� In
Section � we present some numerical results to show the promise of the method�

��� PROBLEM FORMULATION

A suitable mathematical model for the total Darcy velocity u� the total pressure p� and
the water saturation S � ��� �
 in an incompressible displacement of oil by water in a
porous medium can be described by the following set of partial di�erential equations
�CJ��
�

r � u�x� t� � q��x� t�� �x� t� � �� ��� T 
�
u�x� t� � �K�x���o�S� � �w�S��rp�x� t�� �x� t� � �� ��� T 
�

u�x� t� � n�x� � q��x� t�� �x� t� � �� � ��� T 
�
���

and

��x�
�S

�t
�r � �f�S�u� �D�S� x�rS� � q��x� t�� �x� t� � �� ��� T 
�

�f�S�u� �D�S� x�rS� � n�x� � q��x� t�� �x� t� � ��� ��� T 
�
S�x� �� � S��x�� x � ��

���

where � is the physical domain� K�x� is the absolute permeability tensor of the
medium� �i� i � o�w� denotes the water and oil mobilities respectively� q��x� t� and
q��x� t� are source terms� q��x� t� and q��x� t� are the prescribed boundary conditions�
n�x� is the unit outward normal vector� � �� � is a scaling factor to the di�usion term�
pc is the capillary pressure� and f�S� and D�S� x� are the fractional �ow function and
di�usion term given by

f�S� �
�w�S�

�w�S� � �o�S�
�

D�S� x� � K�x�
�w�S��o�S�

�o�S� � �w�S�

dpc
dS

�
���
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Note that the two equations in ��� form a second�order elliptic equation for the
pressure p�x� t� and are coupled to the saturation equation ��� through the saturation
S in the coe�cients� On the other hand� saturation equation ��� is a nonlinear
advection�di�usion equation and is coupled to the pressure equation ��� through the
Darcy velocity u� Furthermore� in the mathematical model the di�usion term D�S� x�
vanishes at S � � and S � �� which is an idealized case since physically D�S� x�
vanishes for S � ��� Sir
 or S � �� � Sir� �
 with Sir being the irreducible saturation
value� The fractional �ow function f�S� de�ned in ��� is typically an S�shaped curve
of saturation S and degenerates at S � � �with the same understanding�� Because the
saturation pro�le is usually a decreasing function in space� as time evolves f�S� tends
to force a shock discontinuity to develop in S while the di�usion term D�S� x� tends
to prevent the shock from forming� The dynamic process could be fairly complicated
because the di�usion degenerates in front of the steep saturation front� It depends on
the interaction between the advection and di�usion terms� in particular� on the rates
at which D�S� x� and f�S� tend to zero as S tends to zero�
When the physical domain � is composed of di�erent media� the di�erent porosities

and permeabilities result in di�erent capillary pressure curves on each subdomain
�Figure ���� Across an interface � the phase pressures are continuous and mass is
conserved� leading to the following interface conditions

pc�S�j�� � pc�S�j�� �
u � nj�� � u � nj�� �

�f�S�u� �D�S� x�rS� � nj�� � �f�S�u� �D�S� x�rS� � nj�� �
�	�

The continuity of capillary pressure pc across an interface � implies the discontinuity
of the saturation across the interface �Figure ���� One has to resolve the discontinuity
carefully so that no spurious e�ects will be propagated into the domain�

��� OPERATOR SPLITTING TECHNIQUES

Extensive research has been carried out for the numerical simulation of system �������
without interfaces� Various techniques have been developed to decouple and linearize
the system� including a fully coupled and fully implicit linearization strategy� an
IMPES �IMplicitly advances the Pressure and Explicitly updates the Saturation in
time� strategy� and a sequential time stepping strategy �Ewi�	
� Di�erent numerical
methods� including the standard Galerkin �nite element method� the cell�centered
�nite di�erence method� the �nite volume method� and the mixed �nite element
method� have been used to solve the pressure equation �CJ��� DEES��� DEW��� EE��
Ewi�	
� We used the mixed method to solve the pressure equation due to its accurate
approximation to the velocity �eld and its local mass conservation property� Because
the normal component of the velocity �eld is continuous� the discrete algebraic system
for the pressure equation is in fact the same as that with no interfaces� Hence� one can
solve the global system as usual� Alternatively� one can use a domain decomposition
procedure to solve the pressure equation on each subdomain iteratively� We refer the
interested readers to �BW��� SBG��
 and the references therein for details�
For simplicity of exposition we consider a one�dimensional analogue of equation ����

Notice that equation ��� is almost hyperbolic due to the small parameter � �� �� An
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e�ective solution procedure for solving the dominating advective part of equation ���

��x�
�S

�t
�

�

�x
�f�S�u� � � ���

is to discretize equation ��� along the characteristics� which allows large time steps
to be used in the numerical simulation� Because equation ��� may have more than
one solution due to the shape of the fractional �ow function f�S�� one cannot directly
apply the modi�ed method of characteristics �DR��
 to equation ���� We follow the
work of Espedal� Ewing� and coworkers �DEES��� EE�
 and split the fractional �ow
function f�S� into two parts by

f�S� � �f�S� � b�S�S� ���

with

�f�S� �

��
�

f�SBL�

SBL
S� if � � S � SBL�

f�S�� if SBL � S � ��
��

Here the Buckley�Leverett shock saturation SBL is de�ned by

f
�

�SBL� �
f�SBL�

SBL
� ���

Because �f �S�u gives the unique physical velocity for an established shock� we use
this operator splitting and rewrite equation ��� along the characteristics as

��x�
� �Sn��

��
� ��x�

� �Sn��

�t
� �f

�

� �Sn���u
� �Sn��

�x
� �� ���

and

��x�
�Sn��

��
�

�

�x

�
b� �Sn���Sn��u� �D� �Sn��� x�

�Sn��

�x

�
� q��x� t

n���� ����

From the de�nition of �f it follows that the characteristic direction is uniquely
determined by equation ��� since the shape of �f allows only a rarefaction wave and
a contact discontinuity for a non�increasing saturation pro�le� Thus� the hyperbolic
equation ��� is discretized by integrating backwards along the characteristics

x� � x� �f
�

�Sn���t� ����

where Sn� � S�x�� tn� and �t � tn�� � tn is the time step�
Note that the characteristics determined by equation ��� are all straight lines in the

�x� t� plane� If equation ��� is solved exactly� the only change in the solution along the
characteristics is due to di�usion �and possibly the source term which vanishes except
at wells�� Thus� we solve equation ���� by the modi�ed method of characteristics
�DEES��� DR��� EE�
Z

�

�
Sn�� � Sn�

�t
wd��

Z
�

�
�D�Sn�� x�

�Sn��

�x
� b�Sn��Sn��u

��w�x�
�x

d�

�

Z
�

q�wd�� �w�x� � H�
� ����

����
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Here a characteristic tracking is used for the advection term� and the quadratic Petrov�
Galerkin method is used for the di�usion term and the residual advection term where
the trial functions S are chosen to be hat functions and the test functions w�x� are
constructed by adding an quadratic perturbation to the hat functions �DEES��� EE�
�

��� A CHARACTERISTIC DOMAIN DECOMPOSITION
ALGORITHM FOR SYSTEM ������� WITH INTERFACES

We now describe a characteristic domain decomposition algorithm for solving the
system ������� with interfaces� We adopt a sequential solution strategy to decouple
and linearize the system �DEES��� DEW��
� For the domain decomposition techniques
for pressure equations with interfaces we refer the interested readers to �BW��� SBG��

for details� We present the algorithm for a one�dimensional problem on � � �a� b� with
one interface at a � d � b� Let N be a positive integer� �t � T	N � and tn � n�t�

Initialization

Substitute the initial condition S�x� �� for S in ��� and solve equations
��� at t� by the mixed method to obtain the Darcy velocity u��x�� where
un�x� � u�x� tn��

for n � �� �� � � � � N � � do

for l � �� �� � � � � lM � � do

L�� For l � �� in equation ��� approximate un���x� by un��� �x� � un�x� or
�un�x� � un���x�� For l � �� substitute Sn��l���kM

for S in ��� and solve

equations ��� at tn�� by the mixed method to obtain the Darcy velocity
un��l �

L�� For l � �� assign Sn����� �d�� � Sn�d��� where Sn��l�k �d�� �

lim
x�d�x�d

Sl�k�x� t
n��� and d� is de�ned in equation ���� with x being

replaced by d� For l � �� assign Sn��l�� �d�� � Sn��l���kM
�d���

L�� Use the interface condition pLc �S
n��
l�� �d��� � pRc �S

n��
l�� �d��� to evaluate

Sn��l�� �d��� where S
n��
l�k �d�� � lim

x�d�x�d
Sn��l�k �x��

for k � �� �� � � � � kM � � do

if error 
 tolerance then

K�� With the given in�ow boundary condition at x � a and Sn��l�k �d��
as the out�ow Dirichlet boundary condition at x � d� solve equation
���� on the subdomain �a� d� for Sn��l�k at time tn���

K�� With Sn��l�k �d�� as the in�ow Dirichlet boundary condition at x � d
and the given out�ow boundary condition at x � b� solve equation
���� on �d� b� for Sn��l�k at tn�� in parallel to the previous step�

K�� Calculate the mass error Mn��
l�k � �M �

R
�
�Sn��l�k � Sn�d�� where

�M is the mass injected at the in�ow boundary and through the
wells during the time period �tn� tn��
�
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K	� Update the Dirichlet boundary condition at the interface x � d by
Sn��l�k �d�� �� Sn��l�k �d�� � �Mn��

l�k � where � is a relaxation parameter�

K�� Use the interface condition pLc �S
n��
l�k �d��� � pRc �S

n��
l�k �d��� to

evaluate Sn��l�k �d���

else

k � kM and l � lM
endif

end

k � kM

end

l � lM

un�� �� un��lM
and Sn�� �� Sn��lM �kM

�
end

Note that the full equation ���� is almost symmetrized and almost well conditioned�
Namely� the condition number is of order O�D�t	��x���� Hence� a diagonal
preconditioner works well in practice� in contrast to elliptic equations where the
coe�cient matrix is ill conditioned and extensive research has been carried out to
develop an e�cient preconditioner�
We now outline generalizations of the above algorithm in several directions� First�

it is easy to see that the above algorithm applies to problems with several interfaces�
Second� we note that the procedure applies to multidimensional problems� as long as
the adjustment in Step K� is kept local in space to avoid introducing any spurious
nonzero saturation to the location where the saturation is zero� Third� Because the
coe�cient matrix for the pressure equation has a much bigger condition number than
that for the saturation equation� it is much more expensive to solve equations in ���
than to solve equation ��� at each time step� Physically the Darcy velocity is much
smoother and varies less rapidly than the saturation� Thus� we can use larger time
steps for pressure equations in ��� and smaller time steps for the saturation equation
��� �see �DEW��� Ewi�	
 for details��

��� Numerical Experiments

In this section we present a numerical example to show the promise of the algorithm�
More extensive results can be found in �Ers��
� In the example� the space domain
�a� b� � ��� �� with the interface located at d � ���� The time interval ��� T 
 � ��� ���	�
�
� � ����� �w�S� � S�� �o�S� � ��� S��� �x � �	���� �t � ������ K � �� on ��� ����
and � on ����� ��� The initial condition is an established shock given by

S��x� �

�
��

���

��	
x� if � � x � ��	�

�� if ��	 � x � ��
����

In the numerical experiments� lM � � and kM � 	� Namely� we extrapolated the
current velocity �eld un�� by its values at the previous time steps and did not iterate
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on equations in ���� With the extrapolated velocity �eld at the current time step� we
iterated four times on the saturation equation ��� at each time step� It was seen in
Figure ���� that the permeability has considerable e�ect on di�usion and capillary
pressure� For a �xed saturation the capillary pressure is higher in a lower permeable
zone than it is in a high permeable zone� We observe that the continuity of capillary
pressure in �	� enforces a jump up in the saturation pro�le across the interface� The
numerical results are free of oscillation or numerical dispersion� and agree with the
results in �CY��
�
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